
MATHEMATICS OF COMPUTATION 
VOLUME 60, NUMBER 202 
APRIL 1993, PAGES 763-770 

CALCULATION OF FIBONACCI POLYNOMIALS FOR 
GFSR SEQUENCES WITH LOW DISCREPANCIES 

SHU TEZUKA AND MASANORI FUSHIMI 

ABSTRACT. Fibonacci polynomials are defined in the context of the two-dimen- 
sional discrepancy of Tausworthe pseudorandom sequences as an analogue to 
Fibonacci numbers, which give the best figure of merit for the two-dimensional 
discrepancy of linear congruential sequences. We conduct an exhaustive search 
for the Fibonacci polynomials of degree less than 32 whose associated Taus- 
worthe sequences can be easily implemented and very quickly generated. 

1. INTRODUCTION 

The major part of the theory of linear congruential sequences was developed 
in the 1 960s and 70s. (The most comprehensive reference on this subject is the 
book by Knuth [4].) One of the most interesting results obtained in that period 
is the fact that the autocorrelation property of linear congruential sequences 
can be characterized by using the partial quotients in the continued fraction ex- 
pansions associated with the linear congruential generators. To be specific, we 
have the best autocorrelation performance for the linear congruential sequences 
when their modulus and multiplier are selected as a consecutive pair of Fi- 
bonacci numbers. It is also known [12] that the autocorrelation can be bounded 
from above by the corresponding two-dimensional discrepancy. Borosh and 
Niederreiter [2] made an exhaustive search for good parameters in terms of this 
criterion. 

For the digital multistep sequences, the special subclass of Tausworthe se- 
quences, Mullen and Niederreiter [7] obtained the figure of merit for the dis- 
crepancy of the sequences, and defined Fibonacci polynomials based on the two- 
dimensional case of their results. Further, they conducted an exhaustive search 
for the Fibonacci polynomials based on their definition. Recently, Tausworthe 
sequences have been shown to be formulated as linear congruential sequences 
in terms of polynomial arithmetic modulo two [16]. This result has the impor- 
tant consequence that we can derive a systematized theory for Tausworthe se- 
quences analogous to that of linear congruential sequences. For example, in the 
paper [18] Tezuka developed the theory on the lattice structure of Tausworthe 
sequences. Another consequence of the result is a more general definition of 
Fibonacci polynomials, which directly correspond to Fibonacci numbers and 
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linear congruential sequences. The merit of this generalization is that there are 
many Fibonacci polynomials which are primitive, while the original Fibonacci 
polynomials as defined in [7] are rarely primitive. 

The objective of this paper is to provide the parameters of Tausworthe se- 
quences with the following properties: (1) the parameters are best possible with 
respect to the two-dimensional discrepancy, and (2) the sequences can be gener- 
ated very fast, i.e., one pseudorandom number is generated with one exclusive-or 
(XOR) operation. The paper is organized as follows. Section 2 briefly overviews 
the definition of Tausworthe sequences and defines Fibonacci polynomials based 
on the theorem for the two-dimensional discrepancy of the sequences. In ?3, 
we describe an exhaustive search conducted for finding Fibonacci polynomials 
whose corresponding Tausworthe sequence can be generated by using the GFSR 
(Generalized Feedback Shift Register) algorithm [5]. Section 4 gives some com- 
parisons with the generators obtained in Andre et al. [1]. 

2. OVERVIEW OF TAUSWORTHE SEQUENCES 

Let GF{2, x} denote the field of all Laurent series of the form S(x) = 

Ei=-. sjxj, with m an integer and sj in GF(2). Here we define linear 
congruential sequences in GF{2, x}. Let a be a mapping from GF{2, x} to 
the real field, defined by 

a(S(x)) = S(2). 

Then a pseudorandom sequence u,n, n = 1, 2,..., in [0,1) is defined by 

(1) fn(x) = (g(x)fn-I(x) + h(x)) mod M(x), 
Un = a(AWIx)M(x), 

where g(x), h(x), M(x) and fn(x) are polynomials in GF{2, x}. In prac- 
tical situations, un is expressed approximately by its truncated value, i.e., by 
summing from some index -L to m, rather than from -oc to m. 

We will show that a Tausworthe sequence is a special case of the above gen- 
eral class. Let M(x) = xP + c,xP- + * + cp be a primitive polynomial of de- 
gree p over GF(2), h(x) 0, g(x) = (xS mod M(x)), with 0 < s < 2P - 1, 
gcd(s, 2P -1) = 1, m = -1 , and L be the "word-size". Suppose fo(x)/M(x) = 

a1x-1 +a2x-2+*-*. Then M(x) x (ax-1 +a2x-2+ 11 ) = fo(x), i.e., no frac- 
tional terms exist in the left-hand side. Hence, an, n = p + 1, p + 2, ... 
satisfies the recurrence relation an = clan-I + - +cpanp (mod 2) whose 
characteristic polynomial is M(x). Therefore, the sequence is written, for 
n = 1, 2, ...,as 

L 

(2) un= E ans+j2'. 
j-l 

This sequence is identical with the Tausworthe sequence defined in [13]. Note 
that the digital multistep sequences defined by Niederreiter [12] are a special 
case of Tausworthe sequences, i.e., 2 < s = L < p. 

The discrepancy of Tausworthe sequences has been obtained in [9, 11, 14, 
17]. The result can be rewritten as follows based on the formulation given above 
in (1). Here we define deg(0) = -1 . 
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Theorem 1. Let 
k 

p(k) = min (deg(hi(x)) + 1), 

i=l 

where the minimum is taken over all nonzero polynomial solutions (h, (x), ... 

hk(x)) of the equation 
k 

Ehi (x) g(x)-=-O mod M(x). 
i=l1 

Then the k-dimensional discrepancy of the Tausworthe sequence over the full 
period satisfies 

D(k) = O((logN)k 1/2P (k), 

where N = 2P. 

Hence, the value of p(k) can be regarded as a figure of merit for the discrep- 
ancy of the Tausworthe sequence; that is to say, the larger p(k) iS, the lower the 
discrepancy. 

Note that Theorem 1 also holds for the sequence defined by (1) if the period 
is 2P - 1, where p is the degree of M(x) [9, 11, 14, 17]. 

2.1. Definition of Fibonacci polynomials. For the two-dimensional case, the 
next theorem [15] links the continued fraction expansion of g(x)/M(x) to 
the two-dimensional discrepancy. The proof, which is almost the same as, but 
simpler than, that of the special case of g(x) = xP in [8], is included for the 
reader's convenience. 

Theorem 2. Let the partial quotients in the continued fraction expansion of 
g(x)/M(x) be AI(x), ... , As(x), i.e., 

g(x)/M(x) = 1/(AI(x) + 1/(A2(x) + + 1/As(x))) 
=: [AI(x), A2(x), ..., As(x)]. 

Then we have 
p(2) = p + 2 - max (deg(Ai(x))). 

Proof. Since h1 + h2g = 0 (mod M), there exists a polynomial I with degree 
< p such that h1 = h2g + 1M. Then we have 

p(2) - 2 = min(deg(h1) + deg(h2)) 
= min(deg(h2g + 1M) + deg(h2)) 
= min(deg(M) + deg(l/h2 + g/M) + 2 deg(h2)) 
= p + min(deg(l/h2 + g/M) + 2 deg(h2)), 

where the minimum is taken over all 1 and h2 with degree < p except for 
h2 = 0, and the degree of a rational function is defined to be the degree of 
the numerator minus the degree of the denominator. The continued fraction 
expansion of g/M is [A1, ..., As]. For i = 1, 2, ..., s, the convergents are 
written as 

Pi 
Qi 
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The numerators Pi and denominators Qi can be obtained by 

P-1=1, P0 =0, Pi=AiPi_1+Pi-2, i=1,...,s, 

Q-1 = ? QO = 1, Qi =AiQi-l + Qi-2, i I 11... 1 s. 

Here, deg(Qr) = Er=- deg(Aj) and deg(Qs) = deg(M) = p. If deg(Qr) < 
deg(h2) < deg(Qr+l) for some r, 0 < r < s, then 

deg(l/h2 + g/I) + 2 deg(h2) 
> deg(Pr/Qr + g/M) + 2 deg(Qr) =-deg(QrQr+l) + 2 deg(Qr) 

- deg(Qr) - deg(Qr+ 1) + 2 deg(Qr) 

= deg(Qr) - deg(Qr+1) = - deg(Ar+1)- 

The first inequality comes from the fact that the continued fraction gives the 
best approximation of g/M. Hence we obtain 

p(2) - p + 2 + min (-deg(Ar+1)). 0 O<r<s 
Note that there exists a pair of polynomials (a(x), b(x)) for any degree 

of b(x) such that the degrees of partial quotients in the continued fraction 
expansion of a(x)/b(x) are all one. Some properties of this kind of pair have 
recently been investigated in [6, 10]. 

Here, we introduce the definition of Fibonacci polynomials. 

Definition 1. A pair of polynomials (a(x), b(x)) with deg(a(x)) = deg(b(x)) - 
1 is called a pair of Fibonacci polynomials if the partial quotients in the con- 
tinued fraction of a(x)/b(x) are all of degree one. 

Our definition can be viewed as a generalization of that of Mullen and Nieder- 
reiter [7], where a polynomial a(x) of degree p is called a Fibonacci polynomial 
if the maximum degree of the partial quotients in the continued fraction expan- 
sion of a(x)/xP is one. The result in [6] claims that for each irreducible polyno- 
mial b(x) there exist exactly two pairs of Fibonacci polynomials (a(x), b(x)) . 

The following recurrence relation produces a sequence of Fibonacci polyno- 
mials, Fi(x), i= 0, 1, 2, ...: 

(3) Fi(x) = Ai(x)Fi- (x) + Fi2(x), i = 2, 3, 

where Fo(x) = 1, F1 (x) = A1 (x), and Ai(x), i = 1, 2, ... , are arbitrary poly- 
nomials over GF(2) of degree one, i.e., Ai(x) = x or x + 1. Thus, (Fi(x), 
F+ I (x)) is a pair of Fibonacci polynomials. 

2.2. GFSR implementation of Tausworthe sequences. Some subclass of Taus- 
worthe sequences can be implemented by using the GFSR algorithm [3, 5, 19], 
which uses the following recurrence relation: 

(4) Un = un-p+q XOR un-p 

where XOR is the bit-wise exclusive-or operation. Since a Tausworthe sequence 
is given by (2), if the decimated sequence {ans: n = 1, 2, ... } satisfies a 
recurrence relation whose characteristic polynomial is a primitive trinomial xP+ 
Xq + 1 , p > q, then the Tausworthe sequence {unI can be quickly generated 
by the GFSR algorithm with a small amount of initialization cost required to 



FIBONACCI POLYNOMIALS FOR GFSR SEQUENCES 767 

calculate u1, ..., up. Note that the recurrence relation (4) corresponds to the 
scheme (1) such that 

(5) g(x)p + g(x)q + 1 = 0 (mod M(x)), 

and h(x) _ 0. 

3. EXHAUSTIVE SEARCH FOR THE BEST GENERATORS 

There are many pairs (a(x), b(x)) of Fibonacci polynomials for a given de- 
gree of b(x). As pointed out in [10], on the average, every polynomial b(x) has 
one a(x) such that in the continued fraction expansion of a(x)/b(x) the par- 
tial quotients are all of degree one. That is why we tabulate only the generators 
which can be implemented by the GFSR algorithm. The strategy of the search is 
as follows: By using the recurrence (3), we generate all pairs (Fpf- (x), Fp (x)), 
and then for each pair, we check whether (Fp>(x))P + (Fp>l(x))q + 1 = 0 
(mod Fp(x)), which comes from the condition (5), where Xp + Xq + 1 ,p > q, 
is a primitive polynomial. If the check passes, then the pair obtained is re- 
garded as (g(x), M(x)) for the Tausworthe sequence. The validity of this 
approach is as follows: Since Xp + Xq + 1,p > q, is a primitive polynomial, 
the resulting sequence u,n, n = 1, 2, ..., has a period of 2P - 1 , i.e., the 
sequence fn(x)/M(x), n = 1, 2, ... , is also of period 2P - 1 . The fact that 
fn(x), n = 1, 2, ... , has a period of 2P - 1 implies that M(x) is irreducible 
and g(x) is a primitive root modulo M(x) [16]. Strictly speaking, M(x) 
should be primitive from the definition of a Tausworthe sequence in (2). 

TABLE 1. The generators G(p, q) resulting from the GFSR re- 
currence relation, un- = Unp+q XOR un_p 

G(3,1): M 0 1 3 
g 2 

G(5,2): M 0 1 2 3 5 
g 1 4 

G(7, 1):M 0 1 2 4 5 6 7 
g 2 56 

G(15, 1):M 0 1 5 7 9 11 12 14 15 
g 0 3 5 10 11 12 13 14 

G(17,5): M 04 5 6 11 14 15 16 17 
g 7 9 12 15 16 

G(18,7): M 0 1 2 3 4 5 8 10 13 14 18 
g 0 1 3 4 6 8 12 14 15 17 

G(20,3): M 0 2 4 6 10 12 13 14 15 16 20 
g 1 3 4 5 6 7 9 10 16 17 19 

G(22, 1): M 0 1 5 6 7 9 10 12 13 14 15 16 18 19 22 
g 0 3 6 8 14 16 19 21 

G(23,5): M 0 1 4 5 7 8 9 11 13 14 16 17 18 19 20 21 23 
g 1 3 6 7 8 9 11 18 22 

G(25,3): M 0 1 6 9 11 14 16 18 19 23 25 
g 0 3 7 9 11 12 13 14 21 24 

G(28,3): M 0 1 3 4 5 8 9 10 11 12 15 20 21 22 23 24 26 27 28 
g 0 12 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 21 22 24 26 27 

G(31, 13):M 0 1 2 3 5 7 8 9 11 12 13 14 16 17 18 19 22 27 28 30 31 
g 1 4 8 9 13 15 19 24 26 28 30 
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TABLE 2. Figures of merit in k dimensions, k = 2, ... , 6, for 
the resulting generators 

L(2) IP(3) LP(4) LP(5) LP(6) I 
G(3,1) 4 3 3 3 3 
G(5,2) 6 4 4 4 3 
G(7,1) 8 5 5 5 5 

G(15, 1) 6 12 11 7 7 
G(17,5) 18 14 12 11 7 
G(18,7) 19 14 13 12 11 
G(20, 3) 21 14 14 12 12 
G(22, 1) 23 17 17 15 13 
G(23, 5) 24 16 15 15 15 
G(25,3) 26 20 19 17 15 
G(28,3) 29 24 23 18 18 

G(31,13) 32 24 24 22 19 

However, we deal with a more general case where M(x) is irreducible and the 
condition (5) is satisfied, because our objective is to find the pair (g(x), M(x)) 
which can be implemented by the recurrence relation (4). 

In the range 3 < p < 32, we found that there exist pairs of Fibonacci polyno- 
mials which pass the above check only for p = 3, 5, 7, 15, 17, 18, 20, 22, 23, 
25, 28, and 31. For each degree, the best pair is selected by using the crite- 
rion: The minimum / such that p(k) > p - k - / for all 3 < k < 5 is calculated 
for the generators obtained, and then the generator giving the smallest / is se- 
lected for each degree. As a result, twelve generators are obtained in total. The 
corresponding polynomials M(x) and g(x) are given in Table 1, where we 
list only the exponents of the nonzero terms of the polynomials. Note that the 
M(x) 's for G(20, 3) and G(22, 1) are irreducible but not primitive. Here we 
omitted the pair for the reciprocal case, Xp + XP-q + 1 , which could be used as 
well. Also, we omitted a pair (g'(x), M'(x)), which is obtained by the trans- 
formation (g'(x), M'(x)) = (g(x + 1), M(x + 1)). In Table 2, we summarize 
the figures of merit in dimensions 2 through 6 for these generators. Since no 
efficient algorithm for the calculation of figures of merit in higher dimensions 
than two is available at present, a brute force calculation, which is the same as 
the one in Andre et al. [1], was used. 

4. COMPARISON AND DISCUSSION 

Low-discrepancy points are mainly used to construct a set of nodes (sam- 
pling points) for multi-dimensional numerical integration, where the speed of 
generating nodes is very important. Our generator is quite attractive from 
this point of view, because it can generate one integer random number by one 
bit-wise exclusive-or (XOR) operation, and we need one division (by 2P) for 
normalization. On the other hand, the digital multistep pseudorandom number 
generator obtained by Mullen and Niederreiter [7] and Andre et al. [1] needs 
m(:= #(nonzero terms of M(x)) - 2) XOR operations to compute one bit of 
an integer random number, so that we need m x p XOR operations followed 
by some shifts and additions to get an integer random number. 

Comparing the figures of merit in Table 2 with those of the universally op- 
timal generators in [1], their generators are slightly better in dimensions three 
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TABLE 3. The generators Gi, i = 1, ... , 4, resulting from the 
GFSR recurrence relation u, = U-31 +q XOR U-31 , where q= 
3, 6, or 13 

GI M 0 2 4 8 10 12 13 16 20 21 22 26 28 30 31 
q = 3 g 1 5 9 13 14 17 20 21 23 24 27 28 30 

G2 M 0 3 4 8 10 15 16 19 25 28 29 30 31 
q=6 g 0 1 3 5 6 9 10 15 16 17 18 19 20 21 22 26 27 29 30 

G3 M 0 3 5 6 7 8 12 13 15 16 18 19 20 23 24 25 26 27 29 30 31 
q=6 g 1 3 8 9 10 11 12 13 14 22 23 30 

G4 M 0 1 2 3 5 7 8 9 11 12 13 14 16 17 18 19 22 27 28 30 31 
q= 13 g 1 4 8 9 13 15 19 24 26 28 30 

TABLE 4. Figures of merit in k dimensions, k = 2, ..., 6, for 
the resulting generators 

= p(2) p(3) p(4) p(5) p(6) 

GI 32 23 23 22 20 
G2 32 24 22 20 20 
G3 32 25 25 20 20 
G4 32 24 24 22 19 

five for any degree. However, all the generators in Table 1 are the best in terms 
of the two-dimensional discrepancy, while all the generators listed in Andre et 
al. are not. Tables 3 and 4 show all generators of degree 31 which we found. In 
comparison with the universally optimal generator of degree 31, whose figures 
of merits are 31, 25, 25, 24, and 20 in the dimensions two to six, respectively, 
the generator G3 is almost comparable. 
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